An Autonomic Traffic Classification System for Network Management 3 Training path Classification path MONITORING TOOL
نویسندگان
چکیده
Traffic classification is an important aspect in network operation and management, but challenging from a research perspective. During the last decade, several works have proposed different methods for traffic classification. Although most proposed methods achieve high accuracy, they present several practical limitations that hinder their actual deployment in production networks. For example, existing methods often require a costly training phase or expensive hardware, while their results have relatively low completeness. In this paper, we address these practical limitations by proposing an autonomic traffic classification system for large networks. Our system combines multiple classification techniques to leverage their advantages and minimize the limitations they present when used alone. Our system can operate with Sampled NetFlow data making it easier to deploy in production networks to assist network operation and management tasks. The main novelty of our system is that it can automatically retrain itself in order to sustain a high classification accuracy along time. We evaluate our solution using a 14-day trace from a large production network and show that our system can sustain an accuracy greater than 96%, even in presence of sampling, during long periods of time. The proposed system has been deployed in production in the Catalan Research and Education network and it is currently being used by network managers of more than 90 institutions connected to this network.
منابع مشابه
Classification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملIntrinsic Monitoring Using Behaviour Models in IPv6 Networks
In conventional networks, correlating path information to resource utilisation on the granularity of packets is a hard problem when using policy-based traffic handling schemes. We introduce a new approach termed ‘intrinsic monitoring’ which relies on the use of IPv6 extension headers in combination with formal behaviour models to gather resource information along a path. This allows a network m...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملBehavioral Analysis of Traffic Flow for an Effective Network Traffic Identification
Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...
متن کاملAn Implementation Of Network Traffic Classification Technique Based On K-Medoids
Classification of network traffic is extensively required mainly for many network management tasks such as flow prioritization, traffic shaping/policing, and diagnostic monitoring. Many approaches have been evolved for this purpose. The classical approach such as port number or payload analysis methods has their own limitations. For example, some applications uses dynamic port number and encryp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014